If it's not what You are looking for type in the equation solver your own equation and let us solve it.
16t^2+64t-32=0
a = 16; b = 64; c = -32;
Δ = b2-4ac
Δ = 642-4·16·(-32)
Δ = 6144
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{6144}=\sqrt{1024*6}=\sqrt{1024}*\sqrt{6}=32\sqrt{6}$$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(64)-32\sqrt{6}}{2*16}=\frac{-64-32\sqrt{6}}{32} $$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(64)+32\sqrt{6}}{2*16}=\frac{-64+32\sqrt{6}}{32} $
| 17k=85 | | f−8f+10=9f+109f+8 | | -16d+2=29-8d+1) | | 5t2+20t+25=0 | | 18v1=53 | | 8(-2n+2)=-18n | | 8x+4x+6-3x=24 | | 2x + 7 = -‐2x + 3 | | (2x-6)*3=180 | | 3x+13=8+16x | | (4x+11)+(7x-6)=43 | | 12=0.25x+4 | | 138=20n-2 | | -4(9c-20)=-18-5(-6c+20) | | 26=r/3+16 | | 4x+7+6x+8=45 | | (x/25-4/5)=-4/5 | | 2x+2(-2)=2 | | -2v^2+12=-3v^2+6v | | 5z^2+3z+7z=2 | | 9x+10(-10)=-10 | | -3p+20=18p-20-16p | | F(1)=3^n | | -x+10=-50+5x | | -6(x+5)-4=-28 | | -2-2x=7x+7 | | 1/2(-15-10x)=-3-5x | | -2/x-3=10/5 | | 1.2(x-5)=4.8x+12 | | 8+8j=-2(-4j-4) | | 2x+6+2x+6+2x+6=180 | | –2t+10+2=6−4t |